
Archimedes’ Cattle Problem

Ilan Vardi

A Problem

which Archimedes devised in epigrams, and which he communicated to students of such matters

at Alexandria in a letter to Eratosthenes of Cyrene.

If thou art diligent and wise, O stranger, compute the number of cattle of the Sun, who

once upon a time grazed on the fields of the Thrinacian isle of Sicily, divided into four herds of

different colours, one milk white, another glossy black, the third yellow and the last dappled. In

each herd were bulls, mighty in number according to these proportions: Understand, stranger,

that the white bulls were equal to a half and a third of the black together with the whole of the

yellow, while the black were equal to the fourth part of the dappled and a fifth, together with,

once more, the whole of the yellow. Observe further that the remaining bulls, the dappled, were

equal to a sixth part of the white and a seventh, together with all the yellow. These were the

proportions of the cows: The white were precisely equal to the third part and a fourth of the

whole herd of the black; while the black were equal to the fourth part once more of the dappled

and with it a fifth part, when all, including the bulls, went to pasture together. Now the dappled

in four parts were equal in number to a fifth part and a sixth of the yellow herd. Finally the

yellow were in number equal to a sixth part and seventh of the white herd.

If thou canst accurately tell, O stranger, the number of Cattle of the Sun, giving separately

the number of well-fed bulls and again the number of females according to each colour, thou

wouldst not be called unskilled or ignorant of numbers, but not yet shalt thou be numbered

among the wise.

But come, understand also all these conditions regarding the cows of the Sun. When the

white bulls mingled their number with the black, they stood firm, equal in depth and breadth,

and the plains of Thrinacia, stretching far in all ways, were filled with their multitude. Again,

when the yellow and the dappled bulls were gathered into one herd they stood in such a manner

that their number, beginning from one, grew slowly greater till it completed a triangular figure,

there being no bulls of other colours in their midst nor one of them lacking.

If thou art able, O stranger, to find out all these things and gather them together in your

mind, giving all the relations, thou shalt depart crowned with glory and knowing that thou hast

been adjudged perfect in this species of wisdom.

This problem, in the form of 22 elegiac couplets, was discovered in modern times by the German critic

and dramatist G.E. Lessing who found it in the library of Wolfenbüttel, Northern Germany, where he was

librarian. In 1773 he published the problem along with a scholium containing an incorrect solution [27,

p. 100]; see [4, Vol. 3, p. 171] for the scholium and its French translation. The translation used here is from

[33, Vol. 2, p. 202], where, following D.H. Fowler [13], the word “devised” has been used instead of “solved.”

The problem is surprisingly difficult and it was not solved until a hundred years ago by Amthor [1], who

showed that the complete solution consists of eight numbers each having about 206, 545 digits. The simple

1



nature of the question and the difficulty of its solution makes this a perfect example of a challenge problem

and shows once more that Archimedes is one of the greatest mathematicians of all time.

Naturally, Amthor did not write out the solution; he gave only the first four significant digits. Many

accounts of the solution are based on Amthor’s paper, e.g., [3], where reduction to a Pell equation is described.

Several subsequent papers give detailed derivations of the solution [17].

The aim of this paper is to take the Cattle Problem out of the realm of the “astronomical” and put it into

manageable form. This is achieved in formulas (12) and (13), which give explicit forms for the solution. For

example, the smallest possible value for the total number of cattle satisfying the conditions of the problem

is

⌈
25194541
184119152 (109931986732829734979866232821433543901088049+50549485234315033074477819735540408986340

√
4729494)4658

⌉
,

where �x� is the smallest integer ≥ x. This formula is an analog of the formula expressing the nth Fibonacci

number as the closest integer to
(
(1 +

√
5)/2
)n
/
√
5. The actual digits of the above number written out take

up 47 pages in [29]. Regarding the computation of the digits of a solution to the Cattle Problem, D.H. Fowler

[13] comments: “I don’t know what anybody would do with a solution, once found, except use it as a piece

of mathematical wall–paper!”

I also show how the Cattle Problem leads to a relatively small solution by using classical formulas of

analytic number theory. These results allow one to compare the size of solutions to different Pell equations,

and I give an example of another Pell equation with smaller coefficients, but whose smallest solution has

over 30 million digits (150 times more than the cattle problem).

Apart from this last result, the methods used depend only on some basic results of number theory and

the elementary theory of finite fields. The analysis is simplified by good notation and the use of computer

algebra systems (Mathematica and Pari) that permit some cumbersome computations to be reduced to a

single computer command. The method presented here is easily amenable to computer computation (see

[37] for details) and the reader can use Section 2.6 to generate a computer solution in a few hours.

1. The solution, part I

1.1. An algebraic formulation. To solve the Cattle Problem, one considers it algebraically by writing

W,w for the white bulls and cows, respectively, and similarly, X,x, Y, y, Z, z for the number of black, yellow,

and dappled bulls and cows. The first set of relations is

(1)

W =

(
1

2
+
1

3

)
X + Y , X =

(
1

4
+
1

5

)
Z + Y , Z =

(
1

6
+
1

7

)
W + Y ,

w =

(
1

3
+
1

4

)
(X + x) , x =

(
1

4
+
1

5

)
(Z + z) , y =

(
1

6
+
1

7

)
(W + w) , z =

(
1

5
+
1

6

)
(Y + y) .

The additional relations are

W +X = a square,(2)

and

Y + Z = a triangular number,(3)
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where a triangular number has the form 1 + 2 + 3 + · · ·+ n = n(n+ 1)/2.

The first part of the problem is quite easy—its solution is essentially what appears in the scholium, so

it is the second part which makes the problem a difficult one. As a preliminary exercise, the reader can try

solving a simple analog of the second part

Problem: In the game of pool one is given balls arranged in a square tray, but when one ball is used as the

cue ball, the others can be racked in a triangle. How many balls are there?

1.2 Solving the linear system. The linear system of equations (1) is easily solved (e.g., withMathematica’s

Solve command). Letting S = (W,X, Y, Z,w, x, y, z) denote a solution, one gets a one–dimensional space of

solutions parametrized by W

S =

(
1,
267

371
,
297

742
,
790

1113
,
171580

246821
,
815541

1727747
,
1813071

3455494
,
83710

246821

)
W .

Since you can’t have fractional cattle, the solution has to be in integers, which you get by multiplying by the

least common multiple of the denominators on the right (once again a single Mathematica command LCM

does the trick). This number turns out to be 10366482 and multiplying through gives the general integer

solution to the seven equations

(4) S = (10366482, 7460514, 4149387, 7358060, 7206360, 4893246, 5439213, 3515820)n , for n = 1, 2, . . . .

The solution given in the scholium corresponds to n = 80.

1.3. Wurm’s problem. Actually, the language of the Cattle Problem leaves some ambiguity as to whether

equation (2) refers to a square number of bulls or whether they form a square figure, since bulls are longer

than they are wide. The latter problem requires that W +X be a “rectangular” number, i.e., a nonprime.

Since this amounts to ignoring condition (2), its solution is much simpler and was solved by J.F. Wurm [43],

so it is called Wurm’s problem while the former is called the complete problem.

To solve Wurm’s problem, one needs to find a value of n for which (3) is satisfied, i.e., Y +Z = q(q+1)/2,

and for which W + X can be written as a product of two numbers whose ratio is roughly that of a bull.

Using (4) Y +Z = (4149387+ 7358060)n = 11507447n, so this can be rewritten as 11507447n= q(q +1)/2,

or q2+ q−2 ·11507447n= 0. Since q must be an integer, one is looking for n such that this quadratic has an

integer solution, i.e.,
√
1 + 4(2 · 11507447n) is an integer. Thus, a solution exists exactly when 1+92059576n

is a perfect square. This can be written as x2 = 1 + 92059576n for some n. Another way to state this is to

find x for which

(5) x2 ≡ 1 (mod 92059576) .

To solve this equation, one uses the Chinese Remainder Theorem, which says that a solution of (5) exists

for each combination of solutions of

(6) x2 ≡ 1 (mod d)

where d is a prime power factor of 92059576 = 23 · 7 · 353 · 4657.
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The solutions to (6) are given by x = 1, 3, 5, 7 mod 8 and x = ±1 mod d for d = 7, 353, and 4657. The

solutions mod 92059576 are built up from these. This can be done using Mathematica’s implementation of

the Chinese Remainder Theorem algorithm. The complete list of solutions that are greater than 1 is

3287843, 4303069, 7590911, 15423983, 18711825, 19727051, 23014893, 23014895,

26302737, 27317963, 30605805, 38438877, 41726719, 42741945, 46029787, 46029789,

49317631, 50332857, 53620699, 61453771, 64741613, 65756839, 69044681, 69044683,

72332525, 73347751, 76635593, 84468665, 87756507, 88771733, 92059575 .

Each of these generates a family of solutions; the smallest being 3287843. The corresponding value of n is

(32878432 − 1)/92059576 = 117423 .

Letting n = 117423 in (4) yields the solution

(1217263415886, 876035935422, 487233469701, 864005479380,

846192410280, 574579625058, 638688708099, 412838131860) ,

and the total number of cattle is 5916837175686.

To check conditions (2) and (3) note that

W +X = 2093299351308 = 22 · 34 · 11 · 29 · 4349 · 4657 ,

is not prime; the closest representation to a square is W + X = 1409076 · 1485583. Moreover, Y + Z =

487233469701+86400547938 = 573634017639, and the equation q2+q−2 ·573634017639 = 0 has the positive

solution q = 1643921, so

Y + Z =
1643921(1643921+ 1)

2
,

as required.

2. The solution, part II

2.1. Reduction to the Pell equation. The solution to the complete problem requires satisfying the extra

condition that W +X is a square. From (4), one has

W +X = (10366482+ 7460514)n= 17826996n .

One can get information about n by looking at the factorization 17826996 = 22 ·3 ·11 ·29 ·4657, which shows

that 22 · 3 · 11 · 29 · 4657n is a square and thus

n = 3 · 11 · 29 · 4657m2 = 4456749m2 ,

for some integer m. Inserting this in (4) gives

(7)
S = (46200808287018, 33249638308986, 18492776362863, 32793026546940,

32116937723640, 21807969217254, 24241207098537, 15669127269180)m2 .
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As before, Y + Z must be a triangular number, i.e.,

Y + Z = (18492776362863+ 32793026546940)m2 = 51285802909803m2 =
q(q + 1)

2
,

so one solves q2 + q − 2 · 51285802909803m2 = 0, which has an integer solution exactly when 1 + 4 · 2 ·

51285802909803m2 is a square, i.e., it has solution (k − 1)/2 if

(8) 1 + 410286423278424m2 = k2 ,

for some k. Equation (8) is the well–known Pell’s equation from number theory [31].

If we factor

410286423278424 = 23 · 3 · 7 · 11 · 29 · 353 · 46572 ,

(8) can be written as 1+2·3·7·11·29·353(2·4657m)2 = k2, which, upon noting that 4729494 = 2·3·7·11·29·353,

is equivalent to

(9) k2 − 4729494�2 = 1 ,

where � is divisible by 2 and by 4657.

Remarks: According to the analysis of Section 3.9, one should actually look at the equation

x2 − 4 · 4729494 y2 = 4 . This equation is equivalent to (9) since x must be an even number, so dividing by 4

gives (x/2)2 − 4729494 y2 = 1, which is the same as (9).

The reader should have similarly reduced the Pool Problem to the equation x2 − 2y2 = −7, which is solved

by finding its minimal solutions and combining them with solutions to the Pell equation u2 − 2v2 = 1.
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2.2. Solution of Pell’s equation using continued fractions. It is known [13, Chapter 9] [24, Sec-

tion 4.5.3] that every real number can be expanded as a continued fraction. For example

π = 3.141592653 . . .= 3 + .141592653 . . .

= 3 +
1

7.062513305 . . .
= 3 +

1

7 + .062513305 . . .

= 3 +
1

7 +
1

15.99659440 . . .

= 3 +
1

7 +
1

15 + .99659440 . . .

= 3 +
1

7 +
1

15 +
1

1.003417231 . . .

= 3 +
1

7 +
1

15 +
1

1 + .003417231 . . .

= 3 +
1

7 +
1

15 +
1

1 +
1

292.63459088 . . .

= 3 +
1

7 +
1

15 +
1

1 +
1

292 +
.. .

which is conventionally written, for typographical convenience, as π = [3, 7, 15, 1, 292, . . .]. A representation

of this type terminates only if the number is rational. Good approximations occur when one truncates the

expansion, especially just before a large coefficient. For example, π ≈ [3, 7] = 3 + 1/7 = 22/7, and a much

better approximation is given by [3, 7, 15, 1] = 355/113. In fact, it can be shown that such truncations give

optimal approximations in the following sense: if p/q is an approximation from truncation then p′/q′ is a

poorer approximation for any 1 ≤ q′ < q.

The point is that solutions to the Pell equation (9) give very good approximations to
√
4729494 in the

sense that k/� is very close to
√
4729494. To see this, divide by � in (9) and factor as a difference of squares

to get ∣∣∣∣k� −
√
4729494

∣∣∣∣ = 1

� (k + �
√
4729494)

,

where the right hand side is < 1/(2�2), which implies that k/� comes from truncating the continued fraction

expansion of
√
4729494 [31, p. 339]

The continued fraction expansion of the square root of an integer is periodic [31] and the optimal approxi-

mation property implies that cutting off the expansion at multiples of the length of the period yields rational

numbers whose numerator and denominator are solutions to the Pell equation (9). An algorithm for solving

(9) is then: (a) expand
√
4729494 as a continued fraction (analogous to the expansion of π above), (b) write

out each partial result as a rational fraction and test the numerator and denominator [8, Section 5.7]. This

algorithm does not come as a standard package in Mathematica but implementing this special case takes

only a few lines [37]; Stan Wagon has written a general program [39]. In fact, this computation can be done

by hand without too much difficulty and [1] gives an explicit description of the intermediate steps. This
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method yields
√
4729494 = [2174, 1, 2, 1, 5, 2, 25, 3, 1, 1, 1, 1, 1, 1, 15, 1, 2, 16, 1, 2, 1, 1,

8, 6, 1, 21, 1, 1, 3, 1, 1, 1, 2, 2, 6, 1, 1, 5, 1, 17, 1, 1, 47, 3, 1, 1,

6, 1, 1, 3, 47, 1, 1, 17, 1, 5, 1, 1, 6, 2, 2, 1, 1, 1, 3, 1, 1, 21, 1, 6,

8, 1, 1, 2, 1, 16, 2, 1, 15, 1, 1, 1, 1, 1, 1, 3, 25, 2, 5, 1, 2, 1, 4348, . . .],

where truncating the expansion just before 4348 (the last number in the period) gives the rational number

109931986732829734979866232821433543901088049

50549485234315033074477819735540408986340
,

which in turn yields the minimal solution to (9):

k = 109931986732829734979866232821433543901088049,

� = 50549485234315033074477819735540408986340.

Computing these numbers took less than one second. It is a basic result of number theory [31] that this

minimal solution gives a “fundamental solution”

ε = 109931986732829734979866232821433543901088049

+ 50549485234315033074477819735540408986340
√
4729494

in the sense that all other solutions to the Pell equation (9) are of the form kd and �d where ε
d = kd +

�d
√
4729494.

We must find a d for which �d is divisible by 2 and by 4657. Since 4729494 is even, in any solution to

k2 − 4729494�2 = 1, k must be odd, so k2 ≡ 1 (mod 8). Since 4729494 is not divisible by 4, � must be even.

Thus, it suffices to find a solution of this equation for which � is divisible by 4657, i.e., a power εn for which

� is divisible by 4657.

Remark: The methods of this section show that the Pool Problem has solution any number (b/2)2, where

a+ b
√
2 = (1± 2

√
2)(1 +

√
2)2n , n = 1, 2, . . . .

2.3. Using modular arithmetic to speed up the search. The search is greatly simplified by

using congruences modulo 4657. One can generalize arithmetic modulo 4657 to include terms of the

form a + b
√
4729494; in fact, one can replace

√
4729494 with

√
4729494 mod 4657 =

√
2639 in the sense

that in all addition and multiplication operations, the coefficients are the same modulo 4657, and so

ε ≡ 4406 + 3051
√
2639 (mod 4657). This type of arithmetic yields a finite field, i.e., all arithmetic oper-

ations including division are allowed [19, Section 7.1]. Moreover, since 2639 is not a perfect square modulo

4657 (Mathematica’s JacobiSymbol function verifies this) this field is a quadratic extension of Z/4657Z.

Let p = 4657 and D = 4729494. Since 1/εd = kd − �d
√
D, one has to check that εd − 1/εd ≡ 0 (mod p),

so one is solving

(10) ε2d ≡ 1 (mod p) .

It is a fundamental result [19, Section 7.1] that xp
2−1 ≡ 1 (mod p) for any x in this field, so any d satisfying

(10) must be a divisor of (p2 − 1)/2. Thus, one needs to check only the divisors d of (p2 − 1)/2 by taking

modular powers ε2d mod p.
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Amthor [1] further showed that only the divisors of p + 1 need to be checked, but H.W. Lenstra [26]

brought to my attention that a further reduction to just the divisors of (p + 1)/2 is possible, i.e., that

εp+1 ≡ 1 (mod p). To prove this last reduction, note that in our finite field xp equals the conjugate of x, i.e.,

if x = a+ b
√
D then xp ≡ a− b

√
D (mod p) as follows from the computation

xp =

p∑
k=0

ak(b
√
D)p−k

(
p

k

)
≡ ap +D(p−1)/2 bp

√
D ≡ a− b

√
D (mod p) ,

where the following elementary number theory facts have been used [31]: (a)
(
p
k

)
is divisible by p for

k = 1, . . . , p − 1, (b) np ≡ n (mod p) for any integer n, (c) D(p−1)/2 ≡ −1 (mod p) when D is not a perfect

square mod p. One therefore concludes that

εp+1 ≡ (k + �
√
D)(k − �

√
D) (mod p) = 1 ,

where the last equality follows from (9).

One can now proceed with the divisibility test. First, let γ = ε2 mod4657 so that γ = 262 + 551
√
2639.

Exponentiation can be done efficiently by repeated squaring and by reducing mod 4657 at each step [36,

Chapter 1]; Amthor [1] used this method. Each exponentiation γd (mod 4657) takes about log d modular

operations. Since 4658/2 = 17 · 137, there are only two cases to check and one quickly finds d = 2329. It

follows from basic algebra that any solution of (10) is of the form d = 2329n, where n = 1, 2, 3, . . ..

2.4. Explicit formulas. We now know that all solutions to (9) are given by k = αn, � = βn, where

ε2329n = αn + βn
√
4729494 , n = 1, 2, . . . .

Recalling that the value of m in (8) was derived from the value of � in (9) by m = �/(2 · 4657), it follows

that m = βn/(2 · 4657). Using

1

αn + βn
√
4729494

= αn − βn
√
4729494 ,

one has

βn =
1

2
√
4729494

(
ε2329n −

1

ε2329n

)
,

which means that

(11) m2 =
1

4 · 410286423278424

(
ε4658n +

1

ε4658n
− 2

)
.

Using this value in (7) gives

(12)

S =

(
159

5648
,
801

39536
,
891

79072

395

19768
,
128685

6575684
,
2446623

184119152
,
5439213

368238304
,
125565

13151368

) (
ε4658n +

1

ε4658n
− 2

)
.

Note that

−1 <
159

5648

(
1

ε4658n
− 2

)
< 0 ,

so

W =

⌈
159

5648
ε4658n

⌉
.
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The same holds for the other variables, so for each n = 1, 2, 3, . . ., a complete solution is given by

(13) S =

⌈(
159

5648
,
801

39536
,
891

79072

395

19768
,
128685

6575684
,
2446623

184119152
,
5439213

368238304
,
125565

13151368

)
ε4658n

⌉
,

where �V� for a vector of real numbers means that �·� is applied to every entry. Similarly, the total number

of cattle is ⌈
25194541

184119152
ε4658n

⌉
.

2.5. Approximate formulas. A nice feature of formula (13) is that it immediately gives approximate

formulas. For example, the smallest possible value of W is ≈ 159
5648 ε

4658 with error less than one, so approxi-

mating ε gives a good approximation to the final answer. If asked to approximate ε to 60 digits,Mathematica

responds with

ε ≈ 219863973465659469959732465642867087802176098.

Note that only 45 digits are given even though 60 digits of an irrational number were asked for. Actually

Mathematica is doing the right thing, and what is going on is that ε+1/ε is an integer and 1/ε is very small.

In fact, to 100 digits,

ε = 219863973465659469959732465642867087802176097.9999999999999999999999999999999999999999999954517332501...

One then has

ε4658 ≈ 5.67112768854253101480996977723824477390782365262860627264119 · 10206545 .

Using this in (13) with n = 1 gives an approximation to the smallest complete solution

(1.59651080467114453143552619437124808613906508634551770069042,

1.148971387728289999712359821825130024256416113353782280550788,

.639034648230902865008559676183639732592051658550699133564764,

1.133192754438638077119555879203311759254143232895740326635608,

1.109829892373319039723960215825309623653339008897800134852635,

.753594142054542639814429119589686473435022187613875093482301,

.837676882418524438692221984108458338745267934241979330049041,

.541460894571456678023619942107102626157017184023982103325062) · 10206544,

so the total number of cattle is approximately

7.76027140648681826953023283321388666423232240592337610315062 · 10206544 .

Similarly, one can find the next solution by letting n = 2 in (13) and approximating. For example, the total

number of cattle is approximately

4.40094900439322858167192351693483698641942349340208810790142 · 10413090 .
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2.6. Generating exact solutions. Of course, one could have done the same computations with more than

60-digit accuracy, but it is interesting to see whether computer algebra systems can handle the exact answer.

To do this, one uses the same method but with the explicit formula (12). This can be done by noting that

the term
1

2

(
ε4658n +

1

ε4658n
− 2

)

is equal to an− 1, where ε4658n = an+ bn
√
4729494. This has the computational advantage that an is easily

extracted from the expression an + bn
√
4729494. The exact solution is then given by

(14) S =

(
159

2824
,
801

19768
,
891

39536
,
395

9884
,
128685

3287842
,
2446623

92059576
,
5439213

184119152
,
125565

6575684

)
(an − 1) ,

while the total number of cattle is
25194541

92059576
(an − 1) .

Formula (14) was used to generate the complete solution for n = 1 (the smallest possible solution). The

main step was computing ε4658 exactly. This was done by repeated squaring, in other words, writing

x4658 = ((((x2
3

· x)2
4

· x)2 · x)2
3

· x)2

so that computing ε4658 took 16 multiplications instead of 4657. The computation was done on a Sun (!)

workstation using Mathematica and took one and a half hours, of which a half hour was spent computing

ε4658 (the final multiplication step was simplified); one hour was required for the 8 multiplications in (14).

The result was saved to a file of size 1, 788, 196 bytes. A similar computation for n = 2 took three hours.

2.7. Least significant digits. One can easily compute the least significant digits of a solution. This is

important, as it is a good check that a complete answer is correct. For example, to compute the 13 least

significant digits of the smallest solution, one considers

ε13 = ε mod (16 · 10
13) = 153543901088049+ 55540408986340

√
4729494 ;

I use 16 · 1013 instead of 1013 because a division by 16 follows. One then uses repeated squaring modulo

16 · 1013 to obtain

ε465813 ≡ 40903550724801+ 147391701494280
√
4729494 (mod 16 · 1013) .

The answer is then obtained by substituting 40903550724801 for an in (14) and computing the result mod-

ulo 1013(
159

2824
,
801

19768
,
891

39536
,
395

9884
,
128685

3287842
,
2446623

92059576
,
5439213

184119152
,
125565

6575684

)
40903550724800

=

(
812958070655400

353
,
4095468016320600

2471
,
2277816480987300

2471
,
4039225634074000

2471
,

2631836712510444000

1643921
,
12509445998120293800

11507447
,
13905195303030723900

11507447
,
1284013586689878000

1643921

)

≡ (9385150341800, 2899825178600, 8635296026300, 3921175894000,

5914059564000, 7238562645400, 2116422113700, 6608963318000) (mod 1013) .
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The 13 least significant digits of the total number of cattle are 6719455081800.

A similar computation can be done for larger values of n. For example, for n = 2, the last 13 digits of

the total number of cattle are 9744397607200.

Remark: I used Mathematica’s PowerMod function to find the modular inverses(
1

353
,
1

2471
,

1

1643921
,

1

11507447
,

1

1643921

)

≡ (8328611898017, 5475515985431, 2967216794481, 6138173827783, 2967216794481) (mod 1013) .

3. The relative size of the solution

One way to estimate the relative size of the solution to the Cattle Problem is to study the sizes of fundamental

solutions to different Pell equations. After looking at many numerical cases, one would guess that the number

of digits of a fundamental solution of x2 − d y2 = 1 is very roughly about
√
d. This is true, and the exact

behavior is given by an important formula of analytic number theory, Dirichlet’s class number formula,

proved by him in 1839 in order to show that there are infinitely many primes in arithmetic progressions [9,

Chapter 4]. It states that for d a squarefree number

(15) log εD =
L(1, χD)

√
D

2hD
,

where D = d if d is of the form 4k + 1, and D = 4d otherwise, εD = (x + y
√
D)/2, where x, y give the

smallest solution of x2 −Dy2 = ±4, and hD is a positive integer called the class number, while L(1, χD) is

the infinite series
∑∞
n=1 (D/n)/n , where (D/·) is Kronecker’s extension of the Legendre symbol.

A simple computation shows that the fundamental solution of x2 −Dy2 = 1 corresponds to εD when D

is not of the form 4k + 1 (as in the Remark of Section 2.1); otherwise, it corresponds to

(i) εD when x
2 −Dy2 = −1 has no solution and x2 −Dy2 = 4 has no solution with odd x, y,

(ii) ε2D when x
2 −Dy2 = −1 has a solution, and x2 −Dy2 = 4 has no solution with odd x, y,

(iii) ε3D when x
2 −Dy2 = −1 has no solution and x2 −Dy2 = 4 has a solution with odd x, y,

(iv) ε6D when x
2 −Dy2 = −1 has a solution and x2 −Dy2 = 4 has a solution with odd x, y.

The equation x2 − Dy2 = −1 is called the negative Pell equation; an arithmetic characterization (e.g.,

congruence conditions) of theD for which it has a solution remains an open problem [7, Chapter 9]. Similarly,

there does not seem to be a simple characterization of the D for which x2 −Dy2 = ±4 has a solution with

odd x, y.

This implies that for a given class number and size of L(1, χD), the size of the fundamental solution to

the Pell equation (15) is smallest when D is not of the form 4k + 1; otherwise it is the same size in case (i),

its logarithm is about twice as big in case (ii), 3 times bigger in case (iii), and 6 times bigger in case (iv).

Since the Cattle Problem yields a number not of the form 4k + 1, its solution is minimal in this respect.

Another influence on the size of εD is L(1, χD), which can be estimated by assuming the Generalized

Riemann Hypothesis. Littlewood [28] showed that the GRH implies the asymptotic bounds

π2

12 eγ log logD
< L(1, χD) < 2 e

γ log logD .
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For D = 4 ·4729494 this gives 0.163826 < 1.50236 < 10.0407, which shows that L(1, χD) is neither very large

nor very small.

The most important factor affecting the relative size of εD is the class number, since log εD is inversely

proportional to hD. Genus theory, first developed by Gauss in [15] (see [7] for a modern treatment), shows

that the class number is divisible by 2t−1, where t is the number of distinct prime divisors of D. So in this

case, h(4 · 4729494) is divisible by 32 and Pari [8] finds this to be the actual number. This is a large value

(the class number is conjectured to be 1 infinitely often) so the fundamental solution in this case is relatively

small. But since the process leading to the Pell equation (9) results in a highly composite d, general “Cattle

Problems” always yield relatively small solutions.

This can be illustrated by comparing with other numbers in the same range. Consider a D that has class

number one and for which there is a solution to x2−Dy2 = −4 with odd x, y. This is true for p = 18916669,

a prime slightly smaller than than 4 · 4729494. The period of the continued fraction of
√
p is 6831, but in

this case two periods are required. The fundamental solution to x2− p y2 = 1 is given by x ≈ 7.6442 · 107061,

y ≈ 1.7575 · 107058. If 18916669 were substituted for 4 · 4729494, the solution to the Cattle Problem would

have over 30 million digits.

In the other direction, one can get smaller solutions by picking highly composite numbers not of the

form 4k + 1. For example, d = 13123110 = 2 · 3 · 5 · 7 · 11 · 13 · 19 · 23 , which has corresponding class

number h(4d) = 320. The continued fraction expansion of
√
d has period 8, and the fundamental solution

to x2 − d y2 = 1 is x = 43471, y = 12. The Cattle Problem with this d substituted for 4729494 would have

only twenty thousand digits.

4. Historical remarks

4.1. The Cattle of the Sun play a pivotal role in the Odyssey, where they are mentioned in the proem

(the prologue) [22, I, line 6]: “Yet even so he did not save his comrades, for all his desire, for through their

own blind folly they perished—fools, who devoured the cattle of Helios Hyperion; whereupon he took from

them the day of their returning.” The fact that this is the only adventure mentioned in the proem has been

the subject of much debate [16], [40]. The Odyssey specifies the number of cattle [22, XII, line 127]: “And

you will come to the island of Thrinacia. There in great numbers feed the cattle of Helios and his sturdy

flocks, seven herds of cattle and as many fine flocks of sheep, and fifty in each. These bear no young, nor do

they ever die. . . ” G.E. Dimock [11] suggest that 350 alludes to the number of days and nights in a year.

The Cattle Problem identifies Thrinacia with Sicily, where Archimedes lived. Evidence for this has

been given by interpreting Thrinacia to mean “three–cornered,” which describes Sicily [20, p. 133] while

Thucydides [34, Book VI, 2] gives Trinacria as the original name for Sicily.

4.2. History of the computation. Amthor [1] was the first to tackle the complete problem and gave the

values W ≈ 1.598 · 10206544, total cattle ≈ 7.766 · 10206544, which are both off in the fourth-most significant

digit. On the other hand, [6] gives these numbers to 32 significant digits, which are correct up to the 30th

digit. Also given are the correct 12 least significant digits. These results were the fruit of 4 years of labour

from 1889 to 1893 by A.H. Bell, E. Fish, and G.H. Richard, constituting the Hillsboro, Illinois, Mathematical

Club. The length of this computation suggests that they did not use a fast exponentiation algorithm.

With the advent of computers came the first complete solution by H.C. Williams, R.A. German, and
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C.R. Zarnke at the University of Waterloo in 1965 [42]. The actual digits of the smallest total number of

cattle were published by H.L. Nelson in [29] (also reported in [30]), who used a CRAY–1 computer in 1981

to find the smallest solution in about 10 minutes. This was not considered enough to serve as a “proper”

test, so the program went on to compute the next five sets of solutions.

4.3. Could Archimedes have solved this problem? It has been debated whether Archimedes actually

posed the problem. The generally accepted view [10] [3] is that of Krumbiegel [25] who claims that though

the text of the problem was not written by Archimedes, the problem itself is probably due to Archimedes.

For example, Krumbiegel cites the Scholia to Plato’s Charmides 165E [33, Vol. 1, p. 17], where one finds a

reference to a problem “called by Archimedes the Cattle–problem.”

F.O. Hultsch [32, II.1, p. 534] [3, p. xxxv] [10, p. 399] hypothesized that Archimedes wrote the problem

in response to Apollonius’ improvement on his measurement of the circle and Apollonius’ treatise on naming

large numbers that rivaled the one in the Sand Reckoner. Knorr [23, p. 295] speculates that Eratosthenes

composed the first part of the problem, and that the second part is Archimedes’ response. The former

hypothesis was the inspiration for the title of the recent book Archimedes’ Revenge [21].

It seems very unlikely that Archimedes would have been able to solve the complete problem due to the

tremendous size of the answer. A better question is whether Archimedes knew that a solution exists. Due

to the size of the coefficient in the resulting Pell equation, knowing how to solve this special case amounts

to knowing how to solve a general Pell equation, which, according to A. Weil [41, p. 19], would depend,

explicitly or not, upon the construction of the continued fraction of
√
D. Continued fractions were known in

Archimedes’ time, and D.H. Fowler [14] makes a convincing argument that continued fractions were funda-

mental in the way ratios were understood by Greek mathematics of the time. Pell’s equation is mentioned

in work of that period, in particular, Theon of Smyrna (circa 130 A.D.), who gave the approximations 3 : 2,

7 : 5, 17 : 12, to
√
2 : 1, together with a rule for generating them (7 = 3+ 2× 2, 5 = 3+ 2,. . . etc.); these are

the convergents of
√
2 and the rule is equivalent to finding all solutions of the Pell equation x2 − 2y2 = ±1

from the fundamental solution. Furthermore, Archimedes’ own paper The Measurement of the Circle con-

tains very good approximations to square roots of integers, in particular, the approximation 1351 : 780

to
√
3 : 1, which corresponds to the sixth solution to the Pell equation x2 − 3y2 = 1, in the sense that

1351 + 780
√
3 = (2 +

√
3)6 .

One can imagine that, having solved some simple problems leading to Pell’s equation (such as the Pool

Problem), Archimedes came to believe that all such problems had solutions. In fact Fowler [13] has proposed

simple forms of the Cattle Problem that can be solved by hand. However, actually proving that Pell’s

equation always has a solution is a subtle problem, which was also posed as a challenge by Fermat and was

finally solved completely by Lagrange [14, p. 335]. To underscore this point, let me note that there are still

important open problems regarding the Pell equation, e.g., understanding the negative Pell equation. It

therefore seems unlikely that Archimedes could have known that a large Pell equation always has a solution.

If Archimedes had solved the problem, then one can speculate, [32] that he might have expressed it

using the system developed in the Sand Reckoner [3, p. 227], though the evidence [14, p. 225] [38] is that

Archimedes only intended his system as a way of expressing large powers of 10. Archimedes’ solution for the

smallest number of total cattle would have been:

7 units of 2 myriad 5819th numbers, and 7602 myriad 7140 units of 2 myriad 5818th numbers,
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and 6486 myriad 8182 units of 2 myriad 5817th numbers,. . . , and 9737 myriad 2340 units of 3rd

numbers, and 6626 myriad 7194 units of 2nd numbers, and 5508 myriad 1800.
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